Why

The correlation coefficient measures the strength (and direction) of linear relation between two variables (measured on the same subjects) and the regression line gives us the best *line* for predicting the response from the explanatory variable - but how good is the line (the "best" may not be very good)? The *coefficient of determination* gives us a handle on how well the line predicts the response and also indicates why we use "smallest sum of squares of residuals" as the criterion for the "best" line.

LEARNING OBJECTIVES

- 1. Understand the coefficient of determination \mathbb{R}^2 .
- 2. Use the coefficient of determination to judge how well the regression line fits the data. s
- 3. Continue developing skills in working with teams.

CITERIA

- 1. Success in working as a team and in fulfilling the team roles.
- 2. Success in involving all members of the team in the conversation.
- 3. Success in completing the exercises.

RESOURCES

- 1. The course syllabus
- 2. The team role desk markers (handed out in class for use during the semester)
- 3. Your text especially section 4.3
- 4. Your calculator
- 5. 40 minutes

PLAN

- 1. Select roles, if you have not already done so, and decide how you will carry out steps 2 and 3 (5 minutes)
- 2. Work through the exercises given here be sure everyone understands all results & procedures(30 minutes)
- 3. Assess the team's work and roles performances and prepare the Reflector's and Recorder's reports including team grade (5 minutes).

DISCUSSION

When we calculate a regression line, we are trying to predict a variable y from a variable x. The most important feature of this is that we relate the changes in y-values to the changes in the corresponding x- values (using the slope of the line).

Our principal measure of the "usefulness" of the regression line is called the *coefficient of determination* [symbol r^2 , though it is also common to use R^2 , for reasons that you would see in a second statistics course - Minitab uses R-sq and your text uses R^2]. This is the r^2 shown on your calculator (and the R-sq shown by Minitab) when you calculate a regression line. Here's what it measures:

The measure that is used for the *total* variation in the y-values is given by the "sum of squares" SS_y (sum of the squares of the deviations: $SS_y = \sum (y_i - \overline{y})^2$. [When we divide this by degrees of freedom we get variance, and the square root of variance is the standard deviation]. When we predict y-values using a regression line y = a + bx, this total sum of squares can be divided into two parts: One part is the variation in y values that comes from following the line (variation in the predicted values - the \hat{y}_i 's) —this is called the "explained" sum of squares, or "sum of squares of the regression" $(SS_R = \sum (\hat{y}_i - \overline{y})^2)$ — and the other part is the scatter – the variation of y values away from the (the residuals or errors)—this is called the "sum of squares of the errors" (of the residuals) or the "unexplained" sum of squares ($SS_E = \sum (y_i - \hat{y}_i)^2$). Remember that the regression line is the line that makes this "unexplained" sum of squares as small as possible.

[Note – this is why we use the sum of *squares of* the residuals as our measure of "goodness or badness" for the line – it corresponds to the sum of squares of the deviations].

If our points fit a line exactly, then the residuals will all be 0 and *all* the variation in y will be "explained" by the line. If the points don't give any line, then the "explained" sum of squares will be 0 and all the variation in y will be in the residuals.

The value of r^2 is the fraction of total sum of squares that is in the "explained" variation. That is: $r^2 = \frac{\text{Explained sum of squares}}{\text{total sum of squares (of the deviations) of }_Y} = \frac{SS_R}{SS_y}$

The value is usually converted to a percentage: if $r^2 = .67$ we read it as 67% and say "67% of the variation in y is explained (or predicted) by the regression with respect to x"

EXAMPLE

For our example in class—predicting bone mineral density based on number of colas drunk per week, we have the line $\hat{y} = .886 - .003x$; we found the sum of the squares of the residuals is .00045. The mean of the y's is .8757 and the total sum of squares (of deviations) for the y values is .001255 [Note - this is $not \sum y^2$ - that is 11.503—it's the sum of the squares of the *deviations*. To get it from the calculator output we take $(n-1)s_y^2$ - rounding the result]. The "explained sum of squares" is .001255 – .000445 = .000810, so the coefficient of determination is $\frac{.000810}{.001255} = ..645$ — about 65% of the variation in bone mineral density is explained by [the linear equation using] number of colas. That means about 35% is random variation which is "unexplained" [related to other variables]. Notice that .645 is the value of r^2 given by the calculator.

EXERCISE

- 1. Calculate r^2 from its definition as the coefficient of determination: For the following set of points:
 - Х Ү
 - $1 \ 3$
 - 2 4
 - 3 6
 - 4 7
 - (a) Calculate the regression line for predicting y from x
 - (b) Calculate the sum of squares (of the deviations) for y [The "total sum of squares" SS_y] [the easiest way to do this (assuming you have entered the values in your calculator) is to get s_y from the calculator and take $(n-1)s_y^2$ (round to one place). Or you could calculate \bar{y} and the deviations $(y_i \bar{y})$ and add the squares.]
 - (c) Calculate the predicted value (\hat{y}_i) and residual $(y_i \hat{y}_i)$ for each data point, square the residuals and add to get the sum of the squares of the residuals. [The "sum of the squares of the errors" SS_E]
 - (d) Calculate the mean and sum of squares (of deviations) of the predicted (\hat{y}) values (round to two places).[This is the "explained" sum of squares the variation corresponding to following the line SS_R]
 - (e) The sums from (c) and (d) should add up to the sum from (b) the total variation in Y measured by the sum of squares is the sum of the "explained" part and the "error" part.
 - (f) Divide the "explained" sum of squares by the total sum of squares the result should match the r^2 given by your calculator at step (a).
- 2. Interpreting the coefficient of determination for comparison of regression lines [Use the calculator to get r^2]: Eight people took a two-part test (similar to SAT) intended to predict their first-year GPA. The table below shows the scores on the two parts and the first-year GPA for the eight students.

Part A	Part B	GPA
50	45	2.9
70	55	3.1
65	65	3.3
35	40	2.7
45	50	2.3
70	75	3.8
75	70	3.6
55	60	3.3

- (a) Make a scatter plot and find the regression line for predicting first-year GPA based on Part A of the test (keep track of r and r^2).
- (b) Give the predicted GPA (based on Part A) and the residual for person number 2.

- (c) Make a scatter plot and find the regression line for predicting first-year GPA based on Part B of the test (keep track of r and r^2)
- (d) Give the predicted GPA (based on Part B) and the residual for person number 2.
- (e) Based on the r^2 values, which part of the test (A or B) gave better predictions for these eight students? Do your scatter plots agree?
- 3. Calculation with Minitab and some interpretation of various values Use the data from exercise 22 p.205 (there is a link to the data set in the Activities area in Blackboard).
 - (a) Use the Stat>Regression>Fitted Line Plot command to obtain a scatter plot with the regression drawn (you do not need to print this) for predicting weight from total length.
 - (b) Dos the line seem (by eye) a reasonable fit to the data? (In particular, does it appear there is a linear relation—no curvature or other odd shape?)
 - (c) What is the slope of the regression line? What does it mean (in terms of weight and length)?
 - (d) What percent of variation in weight is explained by the variation in length?
 - (e) Use the Stat>Regression>Regression command to obtain the regression equation (Yes, this is redundant) be sure you can find and identify the equation, slope and r^2 value from the results. The value given as s is the standard deviation of the residuals (standard deviation of the errors)—what is the value?

READING ASSIGNMENT (in preparation for next class)

No new reading assignment for Monday - review chapters 1-4, prepare questions for Mondays class preparing for test Wedensday

SKILL EXERCISES:(hand in - individually - at next class meeting Remember Minitab and calculator) Sullivan p.212 #3, 7, 9, 10