MATH 116  ACTIVITY 5:
Basic growth models (differential equations) and the logistic equation

WHY:

Frequently in using functions related to size and change, we know some connection between size and growth rate, but don't have a formula (of the f(t) form) for the growth rate. differential equations express such connections. In particular, three basic growth models, focusing on different assumptions about growth,  are used to study population growth in general situations.

LEARNING OBJECTIVES:


 1.
Be able to check a proposed solution for a differential equation

2.
 Be able to solve a separable differential equation and find a particular solution from a given initial condition (of the form y(x) = some value)

 3.
Be able to work with the logistic differential equation model.

 3.
Work as a team, using the team roles.

CRITERIA:

 1.
Success in completing the exercises.

 2.
Success in working as a team and in filling the team roles.

RESOURCES:

 1.
The handout  " Differential equations and growth models" (class 2/17)

 2.
Your text - especially section 11.1

 3.
The team role desk markers (handed out in class for use during the semester)

 4.
40 minutes

PLAN:

1.
Select roles, if you have not already done so, and decide how  you will carry out steps 2 
 first cycle of the graph are hand 3

2. 
Read through the models given 

3.
Complete the exercises given here - be sure all members of the team understand and agree with all the results  in the recorder's report. 

4.
Assess the team's work and  roles performances and prepare the Reflector's and Recorder's reports including team grade .

THE BASIC GROWTH MODELS:

1.) 
The simplest assumption we can make about growth is that population growth is proportional to population size – there is a fixed percent growth rate.
This gives us a differential equation of the form  y( = ky
We solve the equation to give  
[image: image1.wmf]  - with  A  = size at time  0  (often called y0).
This is the exponential growth model 
This model also applies when a population (or any other quantity) is decreasing at a steady percentage rate  (e.g. the concentration of a drug – or any chemical that isn’t being created in the body-  in the bloodstream ) – this is usually called the exponential decay model
2.) 
When a population grows large enough to get near the capacity of its environment, the growth slows down – it can’t continue to be proportional to size.  For a population nearing the carrying capacity of its environment , the simplest assumption would be to expect that growth is proportional to the space remaining.
Using  K  for the carrying capacity, this says  that y( = k(N-y)
Solving this equation is a bit more involved, and gives us  
[image: image2.wmf]  - here N-A is the size at time  0 (A is the amount of unused space in the environment  at time 0)
If  we look at temperature of an (unheated) object placed in a warmer or cooler room (at temperature K), this gives us the temperature as the object warms up (or cools down) to the surrounding temperature. – in this situation, the equation is often called “Newton’s law of cooling”. The equation also describes the change in weight if a person’s food intake would support a lower (or higher) weight than his/her current weight(N is the weight that could be sustained]

3.) 
If we combine the two ideas, we can discuss the growth of a population in both situations – plenty of room and getting crowded – and look at the transition.  That is, we assume that  growth is jointly proportional to size and to the unused space for growth 
This give us the logistic growth model  
[image: image3.wmf]  or 
[image: image4.wmf] [Note the “space remaining” is expressed as a fraction of the potential stable size] whose general solution is 
[image: image5.wmf]. The process of solving this differential equation is a bit tricky – it requires rewriting the fraction  
[image: image6.wmf]as a sum of two fractions (that is 
[image: image7.wmf]] to find the antiderivative and some clever algebraic manipulation after the antiderivative step.
[The equation is also sometimes written in the form 
[image: image8.wmf], and the solution as 
[image: image9.wmf] - a less convenient form]
The starting size - at time  0 - is given by 
[image: image10.wmf] (so 
[image: image11.wmf] ].
The differential equation tells us a lot about the graph – as long as  y < N, y( will be positive – the population will keep growing toward the limit, and if y = N, growth will stop (y( will be 0) – the birth rate and death rate will be in balance. 
We also get information from the second derivative – since 
[image: image12.wmf], we can see that 
[image: image13.wmf] - which will be positive as long as 
[image: image14.wmf] and negative when 
[image: image15.wmf]. thus the growth will be speeding up (graph concave up) when y is less than half the carrying capacity, and slowing down (graph concave down) when y  is above half the carrying capacity.  [point of inflection when y  is at exactly half the capacity].
Thus the graph will be s-shaped (sigmoid]  with the maximum slope (maximum growth rate) at the point where population is at half the carrying capacity of the environment.
This model is also applied to the spread of an infectious disease through a population (since the rate of spread is related to the contacts between infected and uninfected people – so is a percentage of the product of # infected with N-#infected] or the spread of a rumor through a population or crowd.

 A logistic growth example:
Pearl’2 (1920) experiment on growth of our old friend drosophila  in a limited environment: He had an environment which could support1035 flies [He figured this out from the data, afterward] and the growth was characterized by growth rate jointly proportional to j8umber of flies (y)  and to the remaining capacity for growth (
[image: image16.wmf]] with constant of proportionality .166. We will base our calculation on a staring population of 14 flies [Pearl used the data from several later observations to calculate his function]
The differential equation describing the growth is 
[image: image17.wmf], so the general solution is 
[image: image18.wmf] and his particular solution (for starting with 14 flies) is 
[image: image19.wmf].
 EQ \x(
)   Graph from TI-83. Lines at y=0, y= 517 (half of capacity) y = 1035
The graph of his growth model looks like:
and matches very well (but not perfectly – that never happens) with his observed data.
At time t= 21 days, the function says there were 324.5 flies, and Pearl actually had 390. At t = 33 days, the function predicts 797 flies, and there were791, etc..
The growth rate at t=21 days would have been 
[image: image21.wmf] - about37 flies per day.  At t=33 days, it would have been 
[image: image22.wmf] - about 30 flies per day (slower growth)
The maximum growth rate would occur when the population reached 517 flies and would have been about 43 flies per day.

EXERCISES:

1.
By calculating and comparing 
[image: image23.wmf]  and 
[image: image24.wmf]  (they do get messy) show that 
[image: image25.wmf]  is a solution of the differential equation 
[image: image26.wmf].

2.
Work through #7 (all parts – a, b, c, d) on the Differential equations exercises. Notice that the starting size of the population (y = 5000 birds) is greater than the carrying capacity (3500 birds) – so you should expect the population to decline. 


3.
A bacterial culture is grown in a medium which could support 500 g (mass) of the bacteria. As the culture grows, the growth rate is jointly proportional to size y and to the amount (proportion, really) of space remaining for growth (500 – y) with constant of proportionality .065. The culture was started (at time t = 0 hours) with 100 g of bacteria.
a.) Give the differential equation for this growth process
b.) Give the growth function for the size of this culture and sketch the graph.
c.) Give the population size (g) at time 0, 10, 20, 30, 40, 50, and 60 hours. [probably want to use the “table” feature on your calculator] 
d.) How fast (g/hr) will the culture be growing when the size reaches 200g?  at 400g?
e.) What is the fastest growth rate of this culture?


CRITICAL THINKING QUESTIONS:(answer individually in your journal)
1.
Why would we expect a population to grow more slowly when it is very small?

2. 
We saw (last semester and in some of these exercises) that it is possible to calculatae the constant k  and the coefficient A  in an exponential function if we know two points (that is, we know the y-values corresponding to two x-values). Could this be done with the limited-growth models? (find A  and k  if they are not given but population size is observed at two times)? With the logistic model (would be k  and b)?  What about N ? when these models are used to describe actual populations (in experiments or observational studies) do you suppose the researchers start with k, A, N, b  or calculate them from observations during the study?

SKILL DEVELOPMENT EXERCISES (due next Thursday)


Worksheet: Differential equations exercises 8-10
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