Analysis Lab 12

Topic: Uniform Convergence of a Sequence of Functions

Guidelines for Lab Report

For this lab, submit a report according to guidelines given below.

- 1. Complete Questions 1-3 in Section 2, and write your answers on pages 2-4 of this report guide.
- 2. Write your answers to Questions 1-3 of Section 3 on pages 5-8 of this report guide.
- 3. Write your answers to Questions 1-3 of Section 4 on page 9 of this report guide.
- 4. Complete the Questions for Reflection as assigned by your instructor. Write your response to each question on a separate sheet(s), and attach to the rest of this report.

2 Using Examples to Understand Pointwise Limits

Enter your responses below.

- 1. $(f_n(x) = x^n)_{n=1}^{\infty}, [0, 1]$
 - (b) Write the first 6 terms of the sequence $(f_n(.5))_{n=1}^{\infty}$. What is $\lim_{n\to\infty} f_n(.5)$?
 - (c) Does the graph you created in Part (a) support your answer to Part (b)?
 - (d) Compute the first 6 terms of the sequence $(f_n(.2))_{n=1}^{\infty}$. What is $\lim_{n\to\infty} f_n(.2)$?
 - (e) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(.2)$ is?

(f) Write the first 6 terms of the sequence $(f_n(.7))_{n=1}^{\infty}$. What is $\lim_{n \to \infty} f_n(.7)$?

- (g) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(.7)$ is?
- (h) For any $x_0 \neq 1$, what does it appear that $\lim_{n \to \infty} f_n(x_0)$ is?
- (i) What does it appear that $\lim_{n\to\infty} f_n(1)$ is?
- (j) What is the pointwise limit function f?
- (k) Graph the function f.

- (l) What can you say about the continuity of each f_n on the interval [0,1]?
- (m) What can you say about the continuity of f on the interval [0,1]?

2.
$$\left(f_n(x) = \frac{x^n}{1+x^n}\right)_{n=1}^{\infty}, [0,2]$$

(b) Write the first 6 terms of the sequence $(f_n(.5))_{n=1}^{\infty}$. What is $\lim_{n\to\infty} f_n(.5)$?

(c) Does the graph you created in Part (a) support your answer to Part (b)?

- (d) Write the first 6 terms of the sequence $(f_n(.4))_{n=1}^{\infty}$. What is $\lim_{n \to \infty} f_n(.4)$?
- (e) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(.4)$ is?
- (f) Write the first 6 terms of the sequence $(f_n(.1))_{n=1}^{\infty}$. What is $\lim_{n\to\infty} f_n(.1)$?
- (g) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(.1)$ is?
- (h) Using the graph, for any $x_0 \in [0, 1)$, what does it appear that $\lim_{n \to \infty} f_n(x_0)$ is?
- (i) Write the first 6 terms of the sequence $(f_n(1))_{n=1}^{\infty}$. What does it appear that $\lim_{n \to \infty} f_n(1)$ is?
- (j) Using the graph, what does it appear that $\lim_{n \to \infty} f_n(1)$ is?
- (k) Write the first 6 terms of the sequence $(f_n(1.2))_{n=1}^{\infty}$. What is $\lim_{n\to\infty} f_n(1.2)$?
- (l) Using the graph, what does it appear that $\lim_{n \to \infty} f_n(1.2)$ is?
- (m) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(1.4)$ is?
- (n) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(1.8)$ is?
- (o) Using the graph, what does it appear that $\lim_{n\to\infty} f_n(2)$ is?
- (p) Using the graph, for any $x_0 \in (1, 2]$, what does it appear that $\lim_{n \to \infty} f_n(x_0)$ is?
- (q) What is the pointwise limit f?
- (r) Graph the function f.

- (s) What can you say about the continuity of each f_n on the interval [0,2]?
- (t) What can you say about the continuity of f on the interval [0,2]?

- (i) What can you say about the continuity of each f_n on the interval [0,1]?
- (j) What can you say about the continuity of f on the interval [0,1]?

3 Understanding the Two Types of Convergence

1.
$$(f_n(x) = x^n)_{n=1}^{\infty}, [0, 1]$$

(a) $\epsilon = .5$

i. Does it appear that $f_{10}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{10}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

ii. Does it appear that $f_{15}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{15}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

iii. Explanation:

(b) $\epsilon = .2$

- i. Does it appear that $f_{10}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{10}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
- ii. Does it appear that $f_{15}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{15}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

iii. Explanation:

- (c) $\epsilon = .1$
 - i. Does it appear that $f_{10}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{10}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

ii. Does it appear that $f_{15}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$?

If not, identify those points x for which $f_{15}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

iii. Explanation:

2.
$$\left(f_n(x) = \frac{x^n}{1+x^n}\right)_{n=1}^{\infty}, [0,2]$$

(a) $\epsilon = .3$

i. Does it appear that $f_{100}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [.95, 1.05]$? If not, identify those points x for which $f_{100}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

ii. Does it appear that $f_{300}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [.95, 1.05]$? If not, identify those points x for which $f_{300}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

iii. Explanation:

- (b) $\epsilon = .2$
 - i. Does it appear that $f_{100}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [.95, 1.05]$? If not, identify those points x for which $f_{100}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
 - ii. Does it appear that $f_{300}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [.95, 1.05]$? If not, identify those points x for which $f_{300}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

- (c) $\epsilon = .1$
 - i. Does it appear that $f_{100}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [.95, 1.05]$? If not, identify those points x for which $f_{100}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
 - ii. Does it appear that $f_{300}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [.95, 1.05]$? If not, identify those points x for which $f_{300}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
 - iii. Explanation:

3.
$$\left(f_n(x) = \frac{x}{1+nx^2}\right)_{n=1}^{\infty}$$
, [0, 1]
(a) $\epsilon = .3$
i. Does it appear that $f_{100}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$?

If not, identify those points x for which $f_{100}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

- ii. Does it appear that $f_{300}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{300}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
- iii. Explanation:

(b) $\epsilon = .1$

i. Does it appear that $f_{100}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{100}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

- ii. Does it appear that $f_{300}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{300}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
- iii. Explanation:
- (c) $\epsilon = .05$

i. Does it appear that $f_{100}(x) \in (f(x) - \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$?

If not, identify those points x for which $f_{100}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.

- ii. Does it appear that $f_{300}(x) \in (f(x) \epsilon, f(x) + \epsilon)$ for all $x \in [0, 1]$? If not, identify those points x for which $f_{300}(x) \notin (f(x) - \epsilon, f(x) + \epsilon)$.
- iii. Explanation:

4 Critical Thinking Questions

1. Examining the results of the last section, explain in your own words the difference between the behavior of the sequences from Questions 1 and 2 versus the sequence from Question 3.

2. N

- 3. $(f_n(x) = nxe^{-n^2x})_{n=1}^{\infty}, [0,1]$
 - (b) What is the pointwise limit f?

- (d) N
- (e) What can you say about the continuity of each f_n on the interval [0,1]?

(f) What can you say about the continuity of f on the interval [0,1]?