Analysis Lab 12

Topic: Uniform Convergence of a Sequence of Functions

Guidelines for Lab Report

For this lab, submit a report according to guidelines given below.

1. Complete Questions 1-3 in Section 2, and write your answers on pages 2-4 of this report guide.
2. Write your answers to Questions 1-3 of Section 3 on pages $5-8$ of this report guide.
3. Write your answers to Questions 1-3 of Section 4 on page 9 of this report guide.
4. Complete the Questions for Reflection as assigned by your instructor. Write your response to each question on a separate sheet(s), and attach to the rest of this report.

2 Using Examples to Understand Pointwise Limits

Enter your responses below.

1. $\left(f_{n}(x)=x^{n}\right)_{n=1}^{\infty},[0,1]$
(b) Write the first 6 terms of the sequence $\left(f_{n}(.5)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.5)$?
(c) Does the graph you created in Part (a) support your answer to Part (b)?
(d) Compute the first 6 terms of the sequence $\left(f_{n}(.2)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.2)$?
(e) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(.2)$ is?
(f) Write the first 6 terms of the sequence $\left(f_{n}(.7)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.7)$?
(g) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(.7)$ is?
(h) For any $x_{0} \neq 1$, what does it appear that $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ is?
(i) What does it appear that $\lim _{n \rightarrow \infty} f_{n}(1)$ is?
(j) What is the pointwise limit function f ?
(k) Graph the function f.
(l) What can you say about the continuity of each f_{n} on the interval $[0,1]$?
(m) What can you say about the continuity of f on the interval $[0,1]$?
2. $\left(f_{n}(x)=\frac{x^{n}}{1+x^{n}}\right)_{n=1}^{\infty},[0,2]$
(b) Write the first 6 terms of the sequence $\left(f_{n}(.5)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.5)$?
(c) Does the graph you created in Part (a) support your answer to Part (b)?
(d) Write the first 6 terms of the sequence $\left(f_{n}(.4)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.4)$?
(e) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(.4)$ is?
(f) Write the first 6 terms of the sequence $\left(f_{n}(.1)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.1)$?
(g) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(.1)$ is?
(h) Using the graph, for any $x_{0} \in[0,1)$, what does it appear that $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ is?
(i) Write the first 6 terms of the sequence $\left(f_{n}(1)\right)_{n=1}^{\infty}$. What does it appear that $\lim _{n \rightarrow \infty} f_{n}(1)$ is?
(j) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(1)$ is?
(k) Write the first 6 terms of the sequence $\left(f_{n}(1.2)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(1.2)$?
(1) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(1.2)$ is?
(m) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(1.4)$ is?
(n) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(1.8)$ is?
(o) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(2)$ is?
(p) Using the graph, for any $x_{0} \in(1,2]$, what does it appear that $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ is?
(q) What is the pointwise limit f ?
(r) Graph the function f.
(s) What can you say about the continuity of each f_{n} on the interval $[0,2]$?
(t) What can you say about the continuity of f on the interval $[0,2]$?
3. $\left(f_{n}(x)=\frac{x}{1+n x^{2}}\right)_{n=1}^{\infty},[0,1]$
(b) Write the first 20 terms of the sequence $\left(f_{n}(.5)\right)_{n=1}^{\infty}$. What is $\lim _{n \rightarrow \infty} f_{n}(.5)$?
(c) Does the graph you created in Part (a) support your answer to Part (b)?
(d) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(.2)$ is?
(e) Using the graph, what does it appear that $\lim _{n \rightarrow \infty} f_{n}(1)$ is?
(f) Using the graph, for any $x_{0} \in[0,1]$, what does it appear that $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ is?
(g) What is the pointwise limit f ?
(h) Graph the function f.
(i) What can you say about the continuity of each f_{n} on the interval $[0,1]$?
(j) What can you say about the continuity of f on the interval $[0,1]$?

3 Understanding the Two Types of Convergence

1. $\left(f_{n}(x)=x^{n}\right)_{n=1}^{\infty},[0,1]$
(a) $\epsilon=.5$
i. Does it appear that $f_{10}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{10}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{15}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{15}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
(b) $\epsilon=.2$
i. Does it appear that $f_{10}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{10}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{15}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{15}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
(c) $\epsilon=.1$
i. Does it appear that $f_{10}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{10}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{15}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$?

If not, identify those points x for which $f_{15}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
2. $\left(f_{n}(x)=\frac{x^{n}}{1+x^{n}}\right)_{n=1}^{\infty},[0,2]$
(a) $\epsilon=.3$
i. Does it appear that $f_{100}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[.95,1.05]$? If not, identify those points x for which $f_{100}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{300}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[.95,1.05]$?

If not, identify those points x for which $f_{300}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
(b) $\epsilon=.2$
i. Does it appear that $f_{100}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[.95,1.05]$?

If not, identify those points x for which $f_{100}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{300}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[.95,1.05]$? If not, identify those points x for which $f_{300}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
(c) $\epsilon=.1$
i. Does it appear that $f_{100}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[.95,1.05]$?

If not, identify those points x for which $f_{100}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{300}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[.95,1.05]$? If not, identify those points x for which $f_{300}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
3. $\left(f_{n}(x)=\frac{x}{1+n x^{2}}\right)_{n=1}^{\infty},[0,1]$
(a) $\epsilon=.3$
i. Does it appear that $f_{100}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{100}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{300}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{300}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
(b) $\epsilon=.1$
i. Does it appear that $f_{100}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{100}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{300}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{300}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:
(c) $\epsilon=.05$
i. Does it appear that $f_{100}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$?

If not, identify those points x for which $f_{100}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
ii. Does it appear that $f_{300}(x) \in(f(x)-\epsilon, f(x)+\epsilon)$ for all $x \in[0,1]$? If not, identify those points x for which $f_{300}(x) \notin(f(x)-\epsilon, f(x)+\epsilon)$.
iii. Explanation:

1. Examining the results of the last section, explain in your own words the difference between the behavior of the sequences from Questions 1 and 2 versus the sequence from Question 3 .
2. N
3. $\left(f_{n}(x)=n x \mathrm{e}^{-n^{2} x}\right)_{n=1}^{\infty},[0,1]$
(b) What is the pointwise limit f ?
(d) N
(e) What can you say about the continuity of each f_{n} on the interval $[0,1]$?
(f) What can you say about the continuity of f on the interval $[0,1]$?
