Analysis Lab 6

Topic: Algebraic Combinations of Sequences

Guidelines for Lab Report

For this lab, submit a report according to guidelines given below.

- 1. Complete the table from Section 2.1 that is provided on the following page. Submit your statement of Conjecture 1, as well as your responses to Questions 1 and 2 from Section 2.3.
- 2. Complete the table from Section 3.1 that is provided on page 4 of this report guide. Submit your statement of Conjecture 2, as well as your responses to Questions 1 and 2 from Section 3.3.
- 3. Complete the table from Section 4.1 that is provided on page 6 of this report guide. Submit your statement of Conjecture 3, as well as your responses to Questions 1 and 2 from Section 3.3.
- 4. Complete the Questions for Reflection as assigned by your instructor. Write your response for each question on a separate sheet(s), and attach to the rest of this report.

2 The Sum of Two Convergent Sequences

2.1 Formulating a Conjecture

Set	$\lim_{n \to \infty} a_n$	$\lim_{n \to \infty} b_n$	(a_n+b_n)	$\lim_{n \to \infty} (a_n + b_n)$
Set I $(a_n)_{n=1}^{\infty} = \left(\frac{1}{n}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(\frac{5n-2}{n+4}\right)_{n=1}^{\infty}$				
Set II $(a_n)_{n=1}^{\infty} = \left(\frac{1-2n}{n+1}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(2 - \frac{1}{n^2}\right)_{n=1}^{\infty}$				
Set III $(a_n)_{n=2}^{\infty} = \left(\sin\left(\frac{n\pi}{2}\right)\right)_{n=2}^{\infty}$				
$(b_n)_{n=2}^{\infty} = \left(\frac{1}{\ln n}\right)_{n=2}^{\infty}$				
Set IV $(a_n)_{n=1}^{\infty} = \left(1 + \frac{2}{n}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(\left\{ \begin{array}{cc} 3-1/n, & \text{if } n \text{ is even} \\ 3, & \text{if } n \text{ is odd} \end{array} \right)_{n=1}^{\infty} \right)$				
Set V $(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left((-1)^{n+1}\right)_{n=1}^{\infty}$				
$\frac{\text{Set VI}}{(a_n)_{n=1}^{\infty} = (1^n)_{n=1}^{\infty}}$				
$(b_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$				

Conjecture 1:

2.3 The Conjecture and Its Proof

In the space below, provide your responses to Questions 1 and 2. Attach additional sheet(s), if necessary.

3 The Product of Two Convergent Sequences

3.1 Formulating a Conjecture

Set	$\lim_{n \to \infty} a_n$	$\lim_{n \to \infty} b_n$	$(a_n \cdot b_n)$	$\lim_{n \to \infty} (a_n \cdot b_n)$
Set I				
$(a_n)_{n=1}^{\infty} = \left(\frac{2+3n}{n+4}\right)^{\infty}$				
(n + 1) n=1				
$(b_n)_{n=1}^{\infty} = \left(\frac{5n-2}{n+4}\right)_{n=1}^{\infty}$				
Set II				
$(a_n)_{n=1}^{\infty} = (n)_{n=1}^{\infty}$				
$(1)^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(\frac{1}{n^2}\right)_{n=1}$				
Set III $(2)^{\infty}$				
$(a_n)_{n=1}^{\infty} = \left(3^n\right)_{n=1}$				
$(1) \sum_{i=1}^{\infty} \left(2^{\frac{1}{2}}\right)^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(2^{n^2}\right)_{n=1}$				
Set IV				
$(a_n)_{n=1}^{\infty} = \left(3 + \frac{1}{n}\right)^{\infty}$				
$(n)_{n=1}$				
$\left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 2 \\ - \end{array} \right)^{\infty}$ if <i>n</i> is even $\left(\begin{array}{c} 2 \\ - \end{array} \right)^{\infty}$				
$ (b_n)_{n=1}^{\infty} = \left(\begin{array}{cc} & n^2 \\ 2 & \text{if } n \text{ is odd} \end{array} \right) $				
$\operatorname{Set} V$				
$(a_n)_{n=1}^{\infty} = \left(\sin\left(\frac{n\pi}{2}\right)\right)_{n=1}^{\infty}$				
$(h_{n})^{\infty} = ((-1)^{n})^{\infty}$				
$(o_n)_{n=1} - ((-1))_{n=1}$				

Conjecture 2:

3.3 The Conjecture and Its Proof

In the space below, provide your responses to Questions 1 and 2. Attach additional sheet(s), if necessary.

4 The Quotient of Two Convergent Sequences

4.1 Formulating a Conjecture

Sequence	$\lim_{n \to \infty} a_n$	$(1/a_n)$	$\lim_{n \to \infty} (1/a_n)$
$\left(3-\frac{2}{n}\right)_{n=1}^{\infty}$			
$\left(\sin\left(\frac{n\pi}{2}\right)\right)_{n=1}^{\infty}$			
$\left(\frac{2n}{3n+4}\right)_{n=1}^{\infty}$			
$\left(\frac{1}{n^2}\right)_{n=1}^{\infty}$			
$\left(\left\{ \begin{array}{cc} 3 - \frac{1}{n}, & \text{if } n \text{ is even} \\ 3, & \text{if } n \text{ is odd} \end{array} \right)_{n=1}^{\infty} \right)$			
$\left(\frac{n!}{25^n}\right)_{n=1}^{\infty}$			

Conjecture 3:

4.2 The Conjecture and Associated Proofs

In the space below, provide your responses to Questions 1-3. Attach additional sheet(s), if necessary.

5 Weakening the Condition Involving Products

Set	$\lim_{n \to \infty} a_n$	$\lim_{n \to \infty} b_n$	$c_n = a_n b_n$	$\lim_{n \to \infty} c_n$
Set I $(a_n)_{n=1}^{\infty} = \left(\frac{1}{n}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$				
Set II $(a_n)_{n=1}^{\infty} = \left(\frac{1}{n^2}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = (\sin n)_{n=1}^{\infty}$				
Set III $(a_n)_{n=1}^{\infty} = \left(\frac{4}{n^3}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(\left\{ \begin{array}{cc} 2-1/n, & \text{if } n \text{ is even} \\ -2+1/n, & \text{if } n \text{ is odd} \end{array} \right)_{n=1}^{\infty} \right)_{n=1}^{\infty}$				
Set IV $(a_n)_{n=1}^{\infty} = \left(\frac{(-1)^n}{n}\right)_{n=1}^{\infty}$				
$(b_n)_{n=1}^{\infty} = \left(\left\{ \begin{array}{cc} 2, & \text{if } n \text{ is even} \\ 1/n, & \text{if } n \text{ is odd} \end{array} \right)_{n=1}^{\infty} \right.$				

In the space below, provide your responses to Questions 1-5. Attach additional sheet(s), if necessary.