Analysis Lab 9

Topic: Continuity and Sequences

Guidelines for Lab Report

For this lab, submit a report according to guidelines given below.

- 1. For Section 3, fill in each cell of the table provided on page 2 of this report guide.
- 2. For Section 4, submit your answers to Questions 1-7. The tables for Questions 5 and 6 are provided on page 4.
- 3. Complete the Questions for Reflection as assigned by your instructor. Write your response to each question on a separate sheet(s), and attach to the rest of this report.

3 Using Examples to Enhance Understanding

i	$f_i, x_0,$ Sequences	Q1	Q2	Q3	Q4	Q5
1	$f_1(x) = x^2 - 1, x_0 = 0$					
	$(a_n)_{n=1}^{\infty} = \left(\frac{1}{n}\right)_{n=1}^{\infty} \qquad (b_n)_{n=1}^{\infty} = \left(\frac{n}{n^2+1}\right)_{n=1}^{\infty}$					
2	$f_2(x) = \begin{cases} x - 2, & \text{if } x < 4\\ 2, & \text{if } x = 4\\ 6 - 2x, & \text{if } x > 4 \end{cases}, x_0 = 4$					
	$(a_n)_{n=1}^{\infty} = \left(4 + \frac{(-1)^n}{n}\right)_{n=1}^{\infty} \qquad (b_n)_{n=1}^{\infty} = \left(4 - \frac{1}{n}\right)_{n=1}^{\infty}$					
3	$f_3(x) = \begin{cases} 1/x, & \text{if } x \neq 0 \\ 2, & \text{if } x = 0 \end{cases}, x_0 = 0$					
	$(a_n)_{n=1}^{\infty} = \left(-\frac{1}{n}\right)_{n=1}^{\infty} \qquad (b_n)_{n=1}^{\infty} = \left(\frac{1}{n^2}\right)_{n=1}^{\infty}$					
4	$f_4(x) = \begin{cases} \frac{x^2 - 2x - 15}{x - 5}, & \text{if } x \neq 5\\ 1, & \text{if } x = 5 \end{cases}, x_0 = 5$					
	$(a_n)_{n=1}^{\infty} = \left(\frac{5n}{n+1}\right)_{n=1}^{\infty} \qquad (b_n)_{n=1}^{\infty} = \left(5 + \frac{(-1)^n}{n}\right)_{n=1}^{\infty}$					
5	$f_5(x) = \begin{cases} 7-x, & \text{if } x < 2\\ 2x+1, & \text{if } x \ge 2 \end{cases}, x_0 = 2$					
	$(a_n)_{n=1}^{\infty} = \left(2 - \frac{1}{n}\right)_{n=1}^{\infty} \qquad (b_n)_{n=1}^{\infty} = \left(\frac{2n}{n+3}\right)_{n=1}^{\infty}$					

4 Critical Thinking Questions

In the space provided, write your answers to Questions 1-4.

5.

g_i	$g_i(x_0)$	Behavior of $(g_i(x_n))_{n=1}^{\infty}$, where $(x_n)_{n=1}^{\infty}$ converges to x_0	Continuous at x_0 ?
g_1	2	There exists $(x_n) \longrightarrow x_0$ such that $\lim_{n \to \infty} g_1(x_n)$ DNE.	
g_2	DNE	For all $(x_n) \longrightarrow x_0$, $\lim_{n \to \infty} g_2(x_n) = 3$.	
g_3	3		С
g_4	-2		NC
g_5		For all $(x_n) \longrightarrow x_0$, $\lim_{n \to \infty} g_5(x_n) = -1$.	С

6.

f_i	$f_i(x_0)$	Behavior of $(f_i(x_n))_{n=1}^{\infty}$, where $(x_n)_{n=1}^{\infty}$ converges to x_0	Continuous at x_0 ?
f_1			
f_2			
f_3			
f_4			
f_5			

Your statement of the sequence-based definition of continuity: